2.0 Basics of Crystallography

arrangement lattice. The unit cell can contain a single atom or atoms in a fixed A crystal consists of a periodic arrangement of the unit cell into a

spacing but can be resolved into many atomic planes, each with a different d-Crystals consist of planes of atoms that are spaced a distance d apart,

a,b and c (length) and α , β and γ angles between a,b and c are lattice constants or parameters which can be determined by XRD

Seven Crystal Systems - Review

	1 1
	-
4	~
	S
	-
	P.S.
	_
	0
	15
	00
	_
	50
	S

Axis system

$$a = b = c$$
, $\alpha = \beta = \gamma = 90^{\circ}$
 $a = b + c$, $\alpha = \beta = \gamma = 90^{\circ}$
 $a = b + c$, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$
 $a = b = c$, $\alpha = \beta = \gamma + 90^{\circ}$
 $a + b + c$, $\alpha = \beta = \gamma = 90^{\circ}$, $\beta + 90^{\circ}$
 $a + b + c$, $\alpha = \beta = \gamma = 90^{\circ}$, $\beta + 90^{\circ}$
 $a + b + c$, $\alpha + \beta + \gamma + 90^{\circ}$

Miller Indices: hkl - Review

Miller indices-the reciprocals of the fractional intercepts which the plane makes with crystallographic axes

3Å C

(421)

2Å

3Å

Several Atomic Planes and Their d-spacings in a Simple Cubic - Review

Black numbers-fractional intercepts, Blue numbers-Miller indices

d-spacings and lattice parameters **Peak Position**

$$| = 2d_{hkl}sinq_{hkl}$$

Fix I (Cu ka) =
$$1.54\text{Å}$$
 $d_{hkl} = 1.54\text{Å}/$

 $d_{hkl} = 1.54 \text{Å}/2 \sin q_{hkl}$

(Most accurate d-spacings are those calculated from high-angle peaks)

For a simple cubic ($a = b = c = a_0$)

$$d_{hkl} = \frac{\alpha_0}{\sqrt{h^2 + k^2 + l^2}}$$
• $a_0 = d_{hkl} / (h^2 + k^2 + l^2)^{1/2}$
e.g., for NaCl, $2q_{220} = 46^\circ$, $q_{220} = 23^\circ$, $d_{220} = 1.9707\text{Å}$, $a_0 = 5.5739\text{Å}$

Bragg's Law and Diffraction:

How waves reveal the atomic structure of crystals

n = 2dsinq

n-integer

interference (X-rays 1 & 2) from planes with spacing d Diffraction occurs only when Bragg's Law is satisfied Condition for constructive

http://www.eserc.stonybrook.edu/ProjectJava/Bragg/

XRD Pattern of NaCl Powder

211

Significance of Peak Shape in XRD

- 1. Peak position
- 2. Peak width
- 3. Peak intensity